RDRPOSTagger

A Rule-based Part-of-Speech and Morphological Tagging Toolkit

https://github.com/datquocnguyen/RDRPOSTagger


1. Introduction. 2

2. Train RDRPOSTagger on a gold standard training corpus. 3

3. Use pre-trained POS and morphological tagging models. 5

4. Combine RDRPOSTagger with an external initial tagger 8

5. Speed up tagging process with an implementation in Java. 9

References. 10

News:

·      22/06/2019: Ported to Python 3.4+ & Released 300+ pre-trained UPOS, XPOS and morphological tagging models for about 80 languages from UD v2.4.

·      24/05/2017: Released version 1.2.4 with pre-trained Universal POS tagging models for 40+ languages from UD v2.0. This is the last version with Python 2.7 support.

RDRPOSTagger

1. Introduction

RDRPOSTagger is a robust and easy-to-use toolkit for POS and morphological tagging. It employs an error-driven methodology to automatically construct tagging rules in the form of a binary tree.

·      RDRPOSTagger obtains fast training & tagging speed. For example, on the English Penn WSJ sections 22-24, it achieves tagging speeds of 8K and 90K words/second computed for single threaded implementations in Python and Java, respectively (computed on a computer with Core2Duo 2.4GHz and 3GB of memory). See more results in our AICom paper.

·      RDRPOSTagger obtains a competitive performance in comparison to the state-of-the-art results. It now supports pre-trained UPOS, XPOS and morphological tagging models for about 80 languages. See HERE for details.

The general architecture and experimental results of RDRPOSTagger can be found in our following papers:

Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc Pham and Son Bao Pham. RDRPOSTagger: A Ripple Down Rules-based Part-Of-Speech Tagger. In Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL), pp. 17-20, 2014. [.PDF] [.bib]

Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc Pham and Son Bao Pham. A Robust Transformation-Based Learning Approach Using Ripple Down Rules for Part-Of-Speech Tagging. AI Communications (AICom), vol. 29, no. 3, pp. 409-422, 2016. [.PDF] [.bib]

Please CITE either the EACL or the AICom paper whenever RDRPOSTagger is used to produce published results or incorporated into other software.

2. Train RDRPOSTagger on a gold standard training corpus

NOTICES:

·      In terms of implementation, the training process has been implemented in Python while the tagging process has been implemented in both Python and Java. There is a multi-threaded mode with faster tagging speed for the Python implementation. See Section 5 for details of using the Java implementation.

·      RDRPOSTagger requires an initial tagger. The internal initial tagger developed within RDRPOSTagger uses a lexicon to assign a tag for each word. See Section 4 for combining RDRPOSTagger with an external initial tagger.

·      RDRPOSTagger assumes that each line in the gold standard training corpus is a sequence of WORD/TAG pairs separated by whitespace characters. See sample training and test sets in folder data.

Assume that Python 3.4+ is already set to run in command line or terminal (e.g. adding Python to the environment variable ‘path’ in Windows OS).

·      We train RDRPOSTagger on the gold standard training corpus by executing:

pSCRDRtagger$ python RDRPOSTagger.py train PATH-TO-GOLD-STANDARD-TRAINING-CORPUS

Example 1: pSCRDRtagger$ python RDRPOSTagger.py train ../data/goldTrain

Note that the actual command starts from python. Here pSCRDRtagger$ is simply used to denote the current source package pSCRDRtagger.

A lexicon .DICT file and a model .RDR file, for example goldTrain.DICT and goldTrain.RDR, will be generated in the same directory containing the gold standard training corpus.

·      To employ the trained model for POS tagging on a raw unlabeled text corpus, we perform:

pSCRDRtagger$ python RDRPOSTagger.py tag PATH-TO-TRAINED-RDR-MODEL PATH-TO-LEXICON PATH-TO-RAW-TEXT-CORPUS

Example 2: pSCRDRtagger$ python RDRPOSTagger.py tag ../data/goldTrain.RDR ../data/goldTrain.DICT ../data/rawTest

A .TAGGED file, in this case rawTest.TAGGED, will be generated in the same directory containing the raw text corpus.

To obtain faster tagging process in Python: set a higher value for variable NUMBER_OF_PROCESSES in module Config.py in package Utility.

·      To evaluate tagging accuracy, we employ module Eval.py in package Utility :

Utility$ python Eval.py PATH-TO-TAGGED-TEST-CORPUS PATH-TO-GOLD-TEST-CORPUS

Example 3: Utility$ python Eval.py ../data/rawTest.TAGGED ../data/goldTest

·      NOTE: Use RDRPOSTagger4En.py and RDRPOSTagger4Vn.py in case of retraining tagging models for English with Penn Treebank POS tags and for Vietnamese with VietTreebank (or VLSP) POS tags, respectively.

3. Use pre-trained POS and morphological tagging models

·      Pre-trained POS and morphological tagging models from our AI Communications paper:

Language

Corpus

Model

Lexicon

English

Penn WSJ section 00-18 [M93]

../Models/POS/English.RDR

../Models/POS/English.DICT

French

French Treebank [A03]

../Models/POS/French.RDR

../Models/POS/French.DICT

German

TIGER Corpus [B04]

../Models/POS/German.RDR

../Models/POS/German.DICT

Hindi

Hindi Treebank [P09]

../Models/POS/Hindi.RDR

../Models/POS/Hindi.DICT

Italian

ISDT Treebank [B13]

../Models/POS/Italian.RDR

../Models/POS/Italian.DICT

Thai

ORCHID Corpus [S97]

../Models/POS/Thai.RDR

../Models/POS/Thai.DICT

Vietnamese

VLSP 2013 POS-annotated corpus [N09]

../Models/POS/Vietnamese.RDR

../Models/POS/Vietnamese.DICT

Language

Corpus

Model

Lexicon

Bulgarian

BulTreeBank-Morph [S04]

../Models/MORPH/Bulgarian.RDR

../Models/MORPH/Bulgarian.DICT

Czech

Prague Dependency Treebank 2.5 [B12]

../Models/MORPH/Czech.RDR

../Models/MORPH/Czech.DICT

Dutch

Lassy Small Corpus [N13]

../Models/MORPH/Dutch.RDR

../Models/MORPH/Dutch.DICT

French

French Treebank [A03]

../Models/MORPH/French.RDR

../Models/MORPH/French.DICT

German

TIGER Corpus [B04]

../Models/MORPH/German.RDR

../Models/MORPH/German.DICT

Portuguese

Tycho Brahe Corpus [G10]

../Models/MORPH/Portuguese.RDR

../Models/MORPH/Portuguese.DICT

Spanish

IULA LSP Treebank [M12]

../Models/MORPH/Spanish.RDR

../Models/MORPH/Spanish.DICT

Swedish

Stockholm—Ume°a Corpus 3.0 [S12]

../Models/MORPH/Swedish.RDR

../Models/MORPH/Swedish.DICT

·      300+ UPOS, XPOS and FEATS (i.e. morphological) tagging models for about 80 languages available in folder ud-treebanks-v2.4.

·      To use a pre-trained model, we perform:

pSCRDRtagger$ python RDRPOSTagger.py tag PATH-TO-PRETRAINED-RDR-MODEL PATH-TO-LEXICON PATH-TO-RAW-TEXT-CORPUS

Example 4: pSCRDRtagger$ python RDRPOSTagger.py tag ../Models/POS/German.RDR ../Models/POS/German.DICT ../data/GermanRawTest

Example 5: pSCRDRtagger$ python RDRPOSTagger.py tag ../Models/MORPH/German.RDR ../Models/MORPH/German.DICT ../data/GermanRawTest

NOTE that each line in the input raw text corpus represents a word-segmented sentence. For programming with RDRPOSTagger, please follow code lines 92-98 inmodule RDRPOSTagger.py in package pSCRDRTagger. Here is an example:

r = RDRPOSTagger()

# Load the POS tagging model for French

r.constructSCRDRtreeFromRDRfile("../Models/POS/French.RDR")

# Load the lexicon for French

DICT = readDictionary("../Models/POS/French.DICT")

# Tag a tokenized/word-segmented sentence

r.tagRawSentence(DICT, "Cette annonce a fait l' effet d' une véritable bombe .")

·      NOTE: Use RDRPOSTagger4En.py and RDRPOSTagger4Vn.py for running pre-trained English and Vietnamese POS tagging models in folder ../Models/POS, respectively.

4. Combine RDRPOSTagger with an external initial tagger

·      In case of using output from an external initial tagger, to train RDRPOSTagger we perform:

pSCRDRtagger$ python ExtRDRPOSTagger.py train PATH-TO-GOLD-STANDARD-TRAINING-CORPUS PATH-TO-TRAINING-CORPUS-INITIALIZED-BY-EXTERNAL-TAGGER

Example 6: pSCRDRtagger$ python ExtRDRPOSTagger.py train ../data/goldTrain ../data/initTrain

Here the initialized training corpus initTrain is generated by using the external initial tagger to perform tagging on the raw corpus which consists of the raw text extracted from the gold standard training corpus goldTrain.

A model .RDR file, for example initTrain.RDR, will be generated in the same directory containing the initialized training corpus.

·      To use the trained model for retagging a test corpus where words already are initially tagged by the external initial tagger:

pSCRDRtagger$ python ExtRDRPOSTagger.py tag PATH-TO-TRAINED-RDR-MODEL PATH-TO-TEST-CORPUS-INITIALIZED-BY-EXTERNAL-TAGGER

Example 7: pSCRDRtagger$ python ExtRDRPOSTagger.py tag ../data/initTrain.RDR ../data/initTest

5. Speed up tagging process with an implementation in Java

·      Compile: jSCRDRTagger$ javac -encoding UTF-8 RDRPOSTagger.java

·      To use a pre-trained model for tagging a raw text corpus:

jSCRDRTagger$ java RDRPOSTagger PATH-TO-PRETRAINED-RDR-MODEL PATH-TO-LEXICON PATH-TO-RAW-TEXT-CORPUS

Example 8: jSCRDRTagger$ java RDRPOSTagger ../Models/POS/German.RDR ../Models/POS/German.DICT ../data/GermanRawTest

Example 9: jSCRDRTagger$ java RDRPOSTagger ../Models/MORPH/German.RDR ../Models/MORPH/German.DICT ../data/GermanRawTest

RDRPOSTagger has two additional parameters specialized for POS tagging in English and Vietnamese:

Example 10: jSCRDRTagger$ java RDRPOSTagger en ../Models/POS/English.RDR ../Models/POS/English.DICT ../data/en/rawTest

Example 11: jSCRDRTagger$ java RDRPOSTagger vn ../Models/POS/Vietnamese.RDR ../Models/POS/Vietnamese.DICT ../data/vn/rawTest

·      In case of using an external initial tagger:

jSCRDRTagger$ java RDRPOSTagger ex PATH-TO-TRAINED-RDR-MODEL PATH-TO-TEST-CORPUS-INITIALIZED-BY-EXTERNAL-TAGGER

Example 12: jSCRDRTagger$ java RDRPOSTagger ex ../data/initTrain.RDR ../data/initTest

References

[M93] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313– 330, 1993. http://www.cis.upenn.edu/~treebank/

[A03] A. Abeillé, L. Clément, and F. Toussenel. Building a Treebank for French. In Treebanks, volume 20 of Text, Speech and Language Technology, pages 165– 187. 2003. http://www.llf.cnrs.fr/en/Gens/Abeille/French-Treebank-fr.php

[B04] S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra, E. K¨onig, W. Lezius, C. Rohrer, G. Smith, and H. Uszkoreit. TIGER: Linguistic Interpretation of a German Corpus. Research on Language and Computation, 2(4):597–620, 2004. http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.en.html

[P09] M. Palmer, R. Bhatt, B. Narasimhan, O. Rambow, D. M. Sharma, and F. Xia. Hindi Syntax: Annotating Dependency, Lexical Predicate-Argument Structure, and Phrase Structure. In Proceedings of 7th International Conference on Natural Language Processing, pages 261–268, 2009. http://verbs.colorado.edu/hindiurdu/index.html

[B13] C. Bosco, S. Montemagni, and M. Simi. Converting Italian Treebanks: Towards an Italian Stanford Dependency Treebank. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pages 61–69, 2013. http://medialab.di.unipi.it/wiki/ISDT

[S97] V. Sornlertlamvanich, T. Charoenporn, and H. Isahara. ORCHID: Thai Part-Of-Speech Tagged Corpus, 1997. URL http://culturelab.in.th/files/orchid.html

[N09] P. T. Nguyen, X. L. Vu, T. M. H. Nguyen, V. H. Nguyen, and H. P. Le. Building a Large Syntactically-Annotated Corpus of Vietnamese. In Proceedings of the Third Linguistic Annotation Workshop, pages 182–185, 2009. http://vlsp.vietlp.org:8080/

[S04] K. Simov, P. Osenova, A. Simov, and M. Kouylekov. Design and Implementation of the Bulgarian HPSGbased Treebank. Research on Language and Computation, 2:495–522, 2004. http://www.bultreebank.org

[B12] E. Bejcek, J. Panevová, J. Popelka, P. Stranák, M. Sevcíková, J. Stepánek, and Z. Zabokrtský. Prague Dependency Treebank 2.5 - a Revisited Version of PDT 2.0. In Proceedings of 24th International Conference on Computational Linguistics, pages 231–246, 2012. https://ufal.mff.cuni.cz/pdt2.5/

[N13] G. Noord, G. Bouma, F. Eynde, D. Kok, J. Linde, I. Schuurman, E. Sang, and V. Vandeghinste. Large Scale Syntactic Annotation of Written Dutch: Lassy. In Essential Speech and Language Technology for Dutch, Theory and Applications of Natural Language Processing, pages 147–164, 2013. http://www.let.rug.nl/~vannoord/Lassy/

[G10] C. Galves and P. Faria. Tycho Brahe Parsed Corpus of Historical Portuguese, 2010. http://www.tycho.iel.unicamp.br/~tycho/corpus/en/index.html.

[M12] M. Marimon, B. Fisas, N. Bel, M. Villegas, J. Vivaldi, S. Torner, M. Lorente, and S. Vázquez. The IULA Treebank. In Proceedings of the eighth international conference on Language Resources and Evaluation, pages 1920–1926, 2012. https://www.iula.upf.edu/recurs01_tbk_uk.htm

[S12] SUC-3.0. The Stockholm—Ume°a Corpus (SUC) 3.0, 2012. URL http://spraakbanken.gu.se/eng/resource/suc3


Last updated: June 22, 2019